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Abstract
The influence of disorder and defects is of fundamental relevance in the performance of
nanotube-based devices. It is then crucial to understand the properties of (as-grown or in situ
created) defects in order to conquer their detrimental effects, but also to tune nanotube
properties in a desired direction. We show experimentally and theoretically the formation, in
different single-walled carbon nanotubes, of a strong Anderson localization regime in which the
electrical resistance increases exponentially with the length of the nanotube. This implies that,
in these systems, the coherence length can be much longer than the localization length. We also
show how the localization length depends strongly on the tube diameter and it increases as the
tube diameter is enlarged. Furthermore, we analyse in detail the role of temperature on electron
localization, demonstrating that this strong localization regime survives to nearly room
temperature: the net effect of the temperature is to wash out the strong fluctuations that appear
at zero temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although one-dimensional (1D) disordered systems have
been carefully analysed [1] and their density of states,
conductance probability distribution, average resistance, nature
of wavefunctions dominating the transmission process and
characteristic noise, have also been calculated using different
approximations [2, 3], there is still a lack of understanding of
how temperature affects, in these systems, the resistance and its
fluctuations as a function of the length of the system. On the
other hand, in spite of the great development achieved in the
last 10 years in the field of nano-science and in the preparation
of 1D systems, up to the best of our knowledge, there is no
clear realization of 1D disordered structures, where a careful
analysis of the theory’s predictions could be carried out.

5 Present address: CEA, LETI-MINATEC, 17 rue des Martyrs,
38054 Grenoble, Cedex 9, France.

Carbon nanotubes [4] are a good realization of nearly 1D
systems where both basic science and potential nanodevice
applications merge. The electronic properties of nanotubes are
strongly modulated by small structural variations. In particular,
their metallic or semiconducting character is determined by the
diameter and helicity (chirality) of the carbon atoms forming
the nanotube. A recent review of electronic and transport
properties of carbon nanotubes can be found in [5] and ones on
the fundamentals and applications of nanotubes in the books by
Loiseau et al [6], Ebbesen [7], Christopher [8] and Dresselhaus
et al [9] (and references therein).

On the other hand, carbon nanotubes offer an excellent
possibility for analysing their transport properties as a function
of their randomly distributed defects. The influence of defects
is of fundamental relevance in the performance of electronic
and transport properties of carbon materials, in particular for
molecular sensor devices. Substitutional doping by N or
B impurities on carbon nanotubes has been a very intense
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research topic at the experimental and theoretical level during
recent years. Initial works have focused on the effect of
a single defect on the electronic and transport properties,
while further studies have addressed the issue of mesoscopic
transport in nanotubes with random distributions of impurities.
The influence of defects is also of fundamental importance
in the performance of electronic and sensing devices based
on carbon nanostructures. Switching from ballistic to either
the weak or strong localization transport regime is possible
above a certain density of defects. Defect sites augment the
chemical reactivity of nanotube walls, rendering them sensitive
to certain chemical species, as well as to tailor their properties
for specific nanodevice applications.

The main problem when analysing the effects of disorder
on the transport properties is controlling carefully the number
of defects in the nanotube. This problem has been nicely
overcome in [10] by in situ irradiation of single-walled carbon
nanotubes (SWNTs) with Ar+: these ions mainly create di-
vacancies in the nanotube [11] and a systematic control of
the irradiation dose allows an appropriate determination of the
density of nanotube di-vacancies, which can be expected to be
randomly distributed along the structure.

In this paper we follow our previous works and analyse in
detail how argon irradiation modifies the transport properties
of different SWNTs: in particular, here we present detailed
results for (5, 5) nanotubes and compare them with the (10,
10) case, previously reported in [10, 12]. This analysis will
allow us to obtain how the localization regime depends on the
diameter of the SWNTs and, last but not least, how temperature
modifies their transport properties, localization length and
average resistance as a function of the nanotube diameter.

2. Electronic transport regimes in carbon nanotubes.
The Anderson localization regime

Before analysing the strong Anderson localization regime
in SWNTs, it is worth discussing qualitatively the different
electron transport regimes [13] that are expected to be observed
in these systems. Figure 1 shows schematically the regimes
which have been already observed. For completeness, we
should also mention the Luttinger-liquid regime, although, to
the best of our knowledge, it is not clear whether this regime
has been settled beyond reasonable doubt.

Figure 1 illustrates for one-dimensional systems how
the three different regimes, (a) ballistic, (b) diffusive and
(c) localized, are determined.

(a) In the ballistic regime, electrons propagate between the
two electrodes without suffering either elastic or inelastic
processes inside the nanotube. The condition for this
regime to appear is for the nanotube length, L, to be
smaller than either L0, the localization length associated
with the impurities of the system, or Lϕ , the coherence
length associated with the inelastic processes the electrons
may suffer (L < L0, Lϕ). In this case, there is no
voltage drop along the nanotube, but there appears a
voltage drop in the contacts yielding a total resistance of
R0/2 (R0 = 1/G0, G0 being the conductance quantum),

Figure 1. Different regimes are determined by L (nanotube length),
L0 (localization length) and Lϕ (coherence length).

where the factor 1/2 is due to the two channels of the
nanotube. As shown in figure 1(a), the chemical potential
is constant along the nanotube and the contact voltage
drop is associated with the jump in the chemical potentials
between the nanotube and the reservoirs.

(b) In the diffusive regime (see figure 1(b)), the inelastic
electron–phonon interaction is dominant and, in this case,
Lϕ is smaller than both L and L0 (Lϕ < L, L0). In
this regime electrons are scattered off by phonons, and the
transport process is controlled by the diffusive propagation
of electrons. In this limit, one can expect to have a kind
of Ohm’s law; although this regime has been observed at
very low bias and very clean samples (then, L0 is very
long), changes with respect to this law have been found
for high enough bias (higher than the energy of the optical
phonons in the nanotube) [14].
We should comment at this point that the Luttinger-liquid
regime can be expected to dominate the nanotube transport
process if the corresponding incoherent length, say L ′

ϕ , is
shorter than the other lengths of the problem, say L, L0

and Lϕ . It is not clear, however, if this limit can be reached
in the SWNTs.

(c) In the limit of a large number of impurities and low
bias voltage the strong Anderson localization regime
dominates the transport process [12, 15] (see figure 1(c)).
In this limit, electrons become localized by the random
potential of the defects. Typically (see below), the
localized electron wavefunctions have a size of the order
of L0. Therefore, electrons can only propagate from one
electrode to the other by a tunnelling process that yields an
exponential dependence of the nanotube resistance versus
the length of the nanotube, R ∼ R0 exp(L/L0).

In this paper we are interested in analysing the last regime,
the strong Anderson localization regime, a limit for which
L0 < L < Lϕ . If the coherence length is longer than L, we can
neglect the inelastic processes for the electrons. Additionally,
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Figure 2. (a) Scheme of the experimental set-up used to measure the SWNT conductance, showing a gold covered tip, the SWCNT and the
gold electrode. (b) SWNT resistance versus length for a (5, 5) SWNT before and after Ar+ irradiation. (c) As panel (b) but for a smaller Ar+
irradiation. (d) Localization length as a function of the distance between di-vacancies for (5, 5) and (10, 10) SWNTs.

if the nanotubes have enough impurities to satisfy the condition
L0 < L, the system enters into the localization regime. These
two conditions imply (i) probing nanotubes’ lengths about or
smaller than 1 μm, the order of magnitude of the mean free
path associated with the electron–phonon interaction [14], and
(ii) the mean distance between di-vacancies must be around or
smaller than 100–200 nm (this condition comes from the rule
discussed in section 5 that L0 is around 5–10 times the distance
between di-vacancies, the impurities created in the nanotube
with Ar+ irradiation, see section 3).

3. Experiments

The experiments are performed using conductance force
microscopy [16]. Briefly, with this technique a metallized
AFM tip is used as a mobile electrode. Samples consist of
a random distribution of SWNTs deposited on an insulating
substrate where a macroscopic gold electrode has been
evaporated. SWNTs contacted to the electrode are found using
the non-contact dynamic mode. Once a particular nanotube
is selected, the tip is brought into contact with the nanotube
and a voltage is applied. Finally, the electrical current flowing
through the nanotube is acquired (see figure 2(a)). By repeating
this procedure at different pre-selected spots along the tube, it
is possible to obtain resistance versus length curves, R(L) [17].
For this study, the selected SWNTs present diameters of 1.4 ±
0.2 nm and 0.6 ± 0.2 nm, which are compatible with (10, 10)
and (5, 5) chiralities, respectively.

All the commercial SWNTs analysed in our experimental
study [10] show an exponential dependence of resistance on

the length of the tube, attributed to the Anderson localization
regime, due to the presence of defects in the tubes caused
by the SWNT preparation technique. For ‘clean’ metallic
nanotubes directly grown on a surface by chemical vapour
deposition [14], R(L) at low voltage presents a linear
dependence with a resistivity of 10 ± 2 K �/microns. This
number is in perfect agreement with those obtained with
experiments in which many nanoelectrodes are placed along
the SWNT length [18]. The experimental data for commercial
samples can be fitted to R(L) = Rc + R0 exp(L/L0), where
Rc is the contact resistance, R0 is the quantum of resistance,
and L0 is the localization length. Localization lengths for non-
irradiated nanotubes are in between 50 and 450 nm.

After a first electrical characterization as mentioned
above, nanotubes are irradiated with a controlled dose of Ar+

ions at 120 eV in order to create defects. Ar+ irradiation at
this energy is known to create both mono-and di-vacancies at a
rate of 3–1 [11]. After each dose of irradiation, we electrically
characterize again the same nanotube in order to track changes
in their resistance, finding a decrease in the localization length
(figure 2(b)). This is expected in the Anderson localization
regime as the number of defects is increased after the SWNT
being irradiated. Measuring the current, sample area, and
nanotube diameter, we can estimate the number of di-vacancies
created during the irradiation process and, eventually, plot the
localization length as a function of the number of di-vacancies
(the defects mainly responsible for the electron scattering, as
we will show below) for both (10, 10) and (5, 5) nanotubes
(figure 2(c)); this has been done by assuming that three Ar+

ions create one di-vacancy, in agreement with [10, 11].
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Figure 3. Schematic picture of the defected nanotube coupled to two electrodes (L and R).

4. Method of calculation and defects

In order to calculate the relaxation around the defects we
have used a first-principles local orbital density functional
method in which the electron density is expanded in terms
of a sp3-basis set of FIREBALL orbitals [19]. In this way,
we can calculate the most stable geometries for the defects
and their neighbouring atoms and, at the same time, feed
the tight-binding Hamiltonian that is the basis of our Green’s
function technique to analyse the transport of electrons through
the defected nanotube. In what follows we describe the
main ingredients of this theoretical framework that, as we
will demonstrate, is ideally suited to treat electron transport
properties of carbon nanotubes in which a large number of
defects (di-vacancies) are distributed along the tube.

In general, we are interested in the conductance, G, for
a defected nanotube. The simulation geometry consists of a
device region with the defected nanotube connected to two
semi-infinite perfect tubes that act as left and right electrodes
(see figure 3). In this approach, the differential conductance
g(E) is calculated at the tube–lead interface S2 by means of
the equation [20]

g(E) = 4πe2

h̄
Tr

[
D̂ A

L L (E)T̂L2ρ̂22(E)T̂2L D̂R
L L (E)ρ̂L L(E)

]

(1)
where Tr represents the trace of the operator in brackets. T̂L2

describes the coupling between the right end of the nanotube
(which contains the semi-infinite lead 1 plus the defected
nanotube) and lead 2, ρ̂22(E) being the density of states matrix
associated with the decoupled (T̂L2 = 0) semi-infinite lead 2
projected at S2 and related to the retarded Green’s function
(ĝ R

22) by ρ̂22 = −1/π Im ĝ R
22; for calculating ĝ R

22 we use
standard decimation techniques. ρ̂L L (E) is the density of states
matrix projected onto the right end of the nanotube and is
calculated by an iterative procedure. Let us describe briefly this
numerical procedure that has some strong similarities with the
transfer matrix technique used by Professor Pendry on many
occasions. The defected nanotube (c) is divided into several
portions each containing a single defect, c = c1 +c2 +c3 +· · ·.
The iterative procedure starts with the uncoupled semi-infinite
perfect lead 1, characterized by a retarded Green’s function
ĝ R(0)

L L (that, like the one corresponding to lead 2, can be
calculated by decimation techniques). In the first step we
append the first defected section c1 to lead 1 by using Dyson
equation. The retarded Green’s function of section c1, ĝ R

c1c1
, is

written as a function of its corresponding Hamiltonian matrix,
Ĥc1 , and the projection of the left electrode, �̂L(E), onto it:

ĝ R
c1c1

=
[

E + iη − Ĥc1 − �̂L(E)
]−1

(2)

where η → 0+ and the projection �̂L(E) depends on the
Green’s function of the uncoupled lead 1 and the coupling
matrix between lead 1 and section c1, T̂Lc1 (see figure 3):

�̂L(E) = T̂c1 L ĝR(0)

L L (E)T̂Lc1 . (3)

In the second step, section c2 is appended to section c1

(that contains the projection of lead 1) using equations similar
to equations (2) and (3). After N steps, we build the whole
tube and their corresponding retarded and advanced Green’s
functions ĝ R(A)

L L that are needed to feed equation (1). The main
advantage of this numerical procedure is that, at each step,
we have to invert a matrix whose dimensions are controlled
by the size of each defected region and not by the size of
the whole defected nanotube. In this way, we can include
straightforwardly a random configuration containing a huge
number of defects distributed along the nanotube, with a given
mean distance between them. The retarded and advanced
denominator functions D̂ appearing in equation (1) are given
by

D̂R(A)
L L (E) =

[
I − ĝ R(A)

L L (E)T̂L2 ĝ R(A)

22 (E)T̂2L

]−1
(4)

At zero temperature, the low bias conductance G is
calculated by just evaluating g at the Fermi energy, g(EF). If
we are interested in obtaining G at a temperature T , we have
to evaluate the following integral: G = ∫ ∞

−∞ (− d fT

dE )g(E)dE ,
where fT (E) = 1

e
E−EF
kB T +1

is the Fermi distribution function and

kB the Boltzmann constant.

5. Nanotube resistance, localization length and
temperature effects

One-dimensional systems enhance the wave-like nature of
electrons, introducing important corrections in their transport
properties, which depend on the quantum interferences
associated with the boundary conditions and the existing
material impurities. In these 1D systems, electron transmission
through static scattering centres will depend critically on the
energy of the incoming electron and the distance between
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Figure 4. Transmission as a function of energy for a
one-dimensional system. Reproduced with permission from [2].
Copyright 1994 Taylor & Francis Ltd.

the scattering centres [2]. In particular, its total resistance
cannot be calculated as the sum of the resistances associated
with the different scattering centres, because there appears
an interference term which is reflected in an exponential
behaviour, R ≈ R0 exp(L/L0), where R0 is the resistance
quantum, L the system length and L0 the localization length.

Figure 4, taken directly from [2], illustrates this behaviour,
showing for a 1D disordered system how the electron
transmission depends on its energy. The sharp peaks in
the transmission coefficient are fingerprints of the emergence
of strong Anderson localization in these systems and are
originated by resonant localized states that are created by
disorder [21]. These localized states present an exponential
decay away from its centre and, consequently, their resonant
width is proportional to exp(−l/L0), l being the minimum
distance to the system boundaries. This argument shows that
the resistance of the 1D disordered system depends strongly
on the energy of the incoming electron: electrons resonating
with a localized state can have a transmission coefficient close
to unity, while for energies away from the resonant states
transmission falls to very small values. This fact also explains
why the resistance of these 1D disordered systems should show
strong fluctuations: moreover, an average of these fluctuations
would yield a resistance behaving like R ≈ R0 exp(L/L0)

(see [2] for a discussion on how this average should be taken).
Our calculations for different SWNTs show a differential

conductance with the characteristic behaviour of these 1D

systems. In figure 5 we present results for a (5, 5) nanotube
with different number of di-vacancies and a different mean
distance, d , between defects as calculated using the techniques
discussed in section 4; case (a) corresponds to d = 45.4 nm
and case (b) to d = 75.5 nm. Results for 10 di-vacancies
are represented in a full line (black), while cases for 20 di-
vacancies are represented in a dashed line (red). As mentioned
previously, in the discussion of the general properties of
disordered 1D systems, we find that the nanotube conductance
presents strong fluctuations, with a maximum value close to
unity and a minimum that is deeper for an increasing number of
di-vacancies. Notice also how the conductance peaks become
narrower with the number of di-vacancies and for larger values
of d .

Although these results are well known, things are not
so well understood if we consider the effect of temperature
in the system. It has been thought in this field that the
effect of temperature is to introduce inelastic effects in the
electron propagation and to destroy the coherence in the
electron wavefunctions: if this were the case, one would see
experimentally the nanotube resistance to be controlled at room
temperature by a diffusive mechanism. This is not, however,
the case (as our experimental results reported in section 3
demonstrate), and the reason is that temperature effects do not
necessarily destroy the coherent propagation of the electrons.
The crucial point to realize is that if Lϕ > L (see section 2),
even at high temperature electrons will propagate from one
electrode to the other without suffering inelastic processes;
this implies that the main effect of temperature would be to
increase the energy window, kBT , the electrons have for their
propagation along the nanotube, this window introducing an
effective average in the resistance of the system that, as shown
below, is going to eliminate the fluctuations in the nanotube
resistance without destroying the localization regime. This
argument can be expressed more quantitatively in the following
way: due to the energy window introduced by the thermal
energy, kBT , electrons propagating along the nanotube have
a momentum uncertainty given by �k = kBT/h̄vF (vF is the
electron Fermi velocity); this allows us to define the thermal
length, LT, such that LT ≈ 1/�k ≈ h̄vF/kBT , in such a way
that the condition LT

∼= L0 defines the temperature for which
the momentum uncertainty introduced by the energy window
of the bath destroys the resistance fluctuations (but not the

Figure 5. Differential conductance as a function of energy for a (5, 5) nanotube. (a) d = 45.4 nm; full line, 10 di-vacancies; dashed line, 20
di-vacancies. (b) As panel (a) but with d = 75.5 nm. Notice that the range of energies is between −10 and 10 meV.
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Figure 6. ln(2R/R0) as a function of the number of defects, N , and different temperatures for d = 16.3 nm (left) and d = 75.5 nm (right).

Figure 7. 〈ln(2R/R0)〉 as a function of N at room temperature for
different values of d .

localization regime). Notice also that typically, in SWNTs,
Lϕ is around 1 μm [22], this value suggesting that the pure
localization regime could only be observed, even at high T , for
nanotubes around or shorter than this length.

In our calculations, temperature is introduced as explained
in section 4: this means that we calculate the total intensity
(and the resistance) adding all the contributions from all the
states included in the thermal energy window. Figure 6
shows ln(2R/R0) for a (5, 5) nanotube, as a function of the
number of defects for a particular random distribution of di-
vacancies and different temperatures, for two different values
of d ((a) d = 16.3 nm and (b) d = 75.5 nm). The crucial
point to realize from these two figures is how the resistance
fluctuations disappear for increasing values of T : in both
cases, a temperature between 20 and 50 K defines the critical
value above which the resistance increases exponentially
(having no fluctuations) with the number of defects. Another
important result we have obtained from our calculations is
that the nanotube resistance has a weak dependence on the
particular random configuration of di-vacancies and on the
mean distance, d , between defects (when the resistance is
expressed as a function of the number of defects).

Figure 7 shows our results for the resistance of a (5, 5)
nanotube at room temperature (averaged over many different
random configurations of defects) and different values of
d (d = 16.3, 37.6 and 75.5 nm). The reader should
compare figures 6 and 7 and realize that the particular random
configuration of figures 6(a) and (b) yields a resistance (at room
temperature) very close to the averaged values of figure 7.

Figure 8. N0 as a function of the nanotube diameter (the three points
shown in the figure correspond to the (5, 5), (7, 7) and (10, 10)
nanotubes).The inset also shows G/G0 for a single di-vacancy in the
three SWNTs just mentioned.

From figure 7 we conclude that the resistance of a (5, 5)
SWCNT can be written as

R = R0 exp(N/N0), (5)

where N0 = 5.2. As N/N0 = L/L0, we conclude that
the localization length, L0, is given simply by L0 = N0d;
our results show that, for a (5, 5) nanotube and di-vacancies,
the localization length is around five times the mean distance
between defects. This is very reasonable result as a di-vacancy
is a strong scattering defect creating a large localization of the
electronic wavefunctions.

We have also analysed in a similar way the (7, 7) and the
(10, 10) SWNTs. Without going into more details, let us only
mention that we have found that L0 appears to be a function
of the nanotube diameter. Figure 8 shows N0 as a function of
the nanotube diameter (cases (5, 5), (7, 7) and (10, 10)). Notice
the practically linear dependence between N0 and the nanotube
diameter. In the inset of figure 8 we also show the conductance
of a single di-vacancy for an (n, n) nanotube: these results
show how the localization length is directly related to the di-
vacancy conductance, in such a way that di-vacancies having a
smaller conductance have a smaller localization length.

6. Conclusions

In conclusion, we have demonstrated, both experimentally and
theoretically, the extreme importance of defects (in particular

6
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di-vacancies) in the low bias conducting properties of single-
walled carbon nanotubes irradiated with an Ar+ ion beam.
Only 0.1% of di-vacancies produce an increment of several
orders of magnitude in the resistance of a 400 nm long SWNT
segment. This result is supported by our ab initio calculations
for the three different nanotubes (5, 5), (7, 7) and (10, 10)
analysed in this paper. This behaviour is explained by the
strong localization regime created in the 1D system. Our model
is a natural and simple way to understand the experiments
although, as commented above, it only applies to systems
where dissipative interaction is not present. This seems to be
the case in SWNTs in the low bias regime. Indeed, assuming
a realistic defect density induced by a fixed irradiation dose,
the computed localization length L0 for the (5, 5) and (10,
10) tubes is in very good agreement with experiments not
only in absolute value but also showing that there is a strong
dependence of the localization length on the tube diameter.

We can summarize the main results that we have obtained
for these carbon nanotubes. (i) The transition between the
ballistic and the localization regimes occurs for a small number
of di-vacancies (about three to five). (ii) For a higher number
of defects the system shows localization, the number of
effective channels is reduced from two (ballistic) to one [12],
and the localization length depends on the tube diameter.
(iii) At zero temperature, the nanotube conductance is strongly
fluctuating, whereas the effect of finite temperature is to
wash out the fluctuations. The exponential scaling behaviour
is still preserved at room temperature. Low temperature
measurements of irradiated nanotubes will shed light on this
fundamental issue. On the other hand, it is not clear whether
electron correlation effects (e.g. Luttinger-liquid behaviour)
play a role, and this issue has to be resolved by future
investigations.
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